At some point in a massive star's life, the center of the star has been converted to iron and nuclear fusion in the core is no longer an exothermal process. Nuclear fusion ceases and, without this source of thermal pressure, gravity, exerting its inexorable pull on the star, seems to be winning the battle. The star continues its collapse. Then a strange reaction takes place during which electrons and protons are pushed so close together that they merge to become neutrons, releasing energy in the form of neutrinos. There is no available space between the neutrons: they are supported by neutron degenerate pressure. This halts the gravitational collapse and the outer, more tenuous stellar material 'bounces' upon hitting the degenerate core, much like a wave hitting a sea wall bounces back on itself. The conversion of the central core to neutrons releases 1051 ergs of neutron binding potential energy, and after the bounce, the outer layers of the star are violently ejected into the ISM.
If the star starts with between 5 and 12 times the mass of our sun, the neutron degeneracy pressure in the core is thought to be able to withstand the gravitational pressure of the star remaining after the supernova explosion. In this case, a neutron star is left in the center of the SNR. If the neutron star is rotating, it may become a pulsar, emitting radiation in a beam which sweeps the earth as the pulsar rotates. If the star is massive enough, even neutron degenerate pressure will not be able to hold up against gravitational collapse, and the remains continue to be squeezed inward by gravity, forrming a singularity, or black hole.