Out of curiosity, why have I been requested? I'm willing to help, of course, but I don't see how I'm relevant to the topic.
That aside:
Having looked through the thread and the sourced information thoroughly, I would be comfortable with this standard. That being said, I don't believe we can afford to brush off the results of the
Davis et al. article mentioned earlier in the thread. Despite the previous articles implying a 50-90Hz (20-11.1ms) threshold, this particular article suggests that visual flickers can be observed at as much as 500Hz (2ms). As mentioned earlier, this is in part due to saccades - saccades are a natural aspect of our vision, and even occur to some extent while we are visually fixated on a subject, so we would expect to see them influence our perception in a natural environment. Furthermore, the article sheds light regarding the variables that influence this perception:
"
We presented users with a modulated light source, and asked them to determine the level of ambient illumination under which flicker was just noticeable. We performed experiments both with spatially uniform light resembling most prior studies on the critical flicker fusion rate, as well as with a spatially varying image as would be common on display devices such as TVs and computer screens... In our experiments, uniform modulated light was produced by a DLP projector and consists of a solid “bright” frame followed by a solid “black” frame. The high spatial frequency image is first “bright on the left half of the frame and black on the right”, and then inverted. We observed the effect described in this paper whenever we displayed an image containing an edge and its inverse in rapid succession. The effect was even stronger with more complex content that contained more edges, such as that in natural images. We chose a simple image with a single edge to allow our experimental condition to be as repeatable as possible... When the modulated light source is spatially uniform, we obtain a contrast sensitivity curve that matches that reported in most textbooks and articles. Sensitivity drops to zero near 65 Hz. However, when the modulated light source contains a spatial high frequency edge, all viewers saw flicker artifacts over 200 Hz and several viewers reported visibility of flicker artifacts at over 800 Hz. For the median viewer, flicker artifacts disappear only over 500 Hz, many times the commonly reported flicker fusion rate."
To broadly summarise, then, flicker becomes more noticeable at higher frequencies when the shapes depicted are more complex and contain more edges, capping out at around 800Hz for a simple image with a single edge, and with a median of 500Hz. The problem that this article identifies with previous research on the topic is that we only find the 50-90Hz rate described by many previous articles when we use a spatially uniform source without a defined edge, such as a pulsating light fixture, and that the frequency at which we can detect flickers is significantly higher for the kinds of more complex, defined shapes we would observe in a natural environment.
While I would like to focus primarily on the objective evidence here, and not simply an unverifiable anecdote, I would also like to mention in passing that most people (including me) who have seen displays with variable refresh rates (i.e.: monitors that can go between 60-120Hz) can see the difference in image changes - there are some monitors that go upwards of 300Hz, and while the jumps are known to have diminishing returns, the differences produced are still noticeable.
If we're going to use this standard as a baseline for calculating feats in the future, we need to acknowledge the evidence that our ability to perceive differences in visual stimuli are much higher in natural circumstances than they are when observing spatially uniform stimuli. As a hypothetical example: if Person A was looking at Person B, and Person B travelled fast enough to vanish/appear somewhere else via speed alone, then the fact that Person B is a more complex shape with a defined edge (try picking someone up with that line) would suggest Person A's ability to detect changes in Person B's position should be far better attuned than it would be for a spatially uniform pulsating light. For that feat, I would suggest then that a 500Hz baseline is more congruent with the evidence.