- 11
- 3
Yes, you heard that right, it's possible for a Blue Whale to make enough Energy equal to 5 kilograms of TNT (20920000 Joules). Let me explain.
So normally, a Blue Whale would be on the upper-end of the Wall-Tier power (which apparently has a low-end to high-end ratio of more than 1000×.) with a [199 ton Blue Whale, which is the largest confirmed] as well as a speed of 13.89 m/s having a maximum KE(Kinetic Energy) in short bursts of (1/2)(199000 kg)(13.89 m/s)2= 19,196,744 Joules (plugging in the current values for the Blue Whale's maximum confirmed mass as m, and its speed in short bursts as v) which falls just short of the 20,920,000 Joules required for a Small Building level Power level. Even at the low end of 75.5 tons for a male pygmy Blue Whale.
, it is easily able to have a KE=(1/2)(75500 kg)((13.89 m/s)^2)=7.283×10^6 J/1.74 kilograms of TNT (9-B+), Wall+ Tier.
And at our lowest end (5.56 m/s cruising speed):
KE=(1/2)(75500 kg)((5.56 m/s^)^2)= 1,166,988.4 J/0.28 kg of tnt (9-B)
A study, which has reduced the Perucetus to a more realistic Wall-Level Power level, has ironically allowed Blue Whales to reach a maximum weight of 250 tons.
And remember, to have Small Building-level Power, a Blue Whale must have a maximum KE of 20,920,000 Joules.
Plugging this into our formula:
20,920,000 Joules=(1/2)m((13.89 m/s)^2)
41,840,000 Joules=m((13.89 m/s)2)
41,840,000 Joules/192.9321 (m/s)^2
216,863.86 kg=m
And assuming Blue Whales are perfect cubes that weigh that much (for simplicity):
199000 kg/27000m^3 = 7.37 kg/m3
And now:
216,863.86 kg/7.37 kg/m3 = 29,425.22 m3, which results in a cube root of approximately 30.87 meters, so all the largest confirmed Blue Whale has to do is to add one more meter to its length to reach Small Building level.
With a 250 ton Blue Whale:
KE=(1/2)(250000 kg)((13.89 m/s)^2)
KE=125000 kg(192.9321 (m^2/s^2))
KE=24 116 512.5 Joules.
Yup! Over 5 kilos of TNT for the KE of the largest Blue Whale specimens possible in short bursts! Blue Whales can possible reach Small Building levels of power now! It's lucky we lived in a time where we have an animal with a Small Building Power Level. This is more KE than a Bison-sized Rathos, which can violently shatter stone walls. It's a good thing these animals are completely docile, or else...
And just to make sure this is Small Building Tier:
(0.005 tons TNT)(4,184,000,000 J/1 ton TNT)=20,920,000 Joules
24,116,512.5 J-20,920,000 J= 3 196 512.5 joules greater than the minimum threshold for Small Building Tier characters.
So normally, a Blue Whale would be on the upper-end of the Wall-Tier power (which apparently has a low-end to high-end ratio of more than 1000×.) with a [199 ton Blue Whale, which is the largest confirmed] as well as a speed of 13.89 m/s having a maximum KE(Kinetic Energy) in short bursts of (1/2)(199000 kg)(13.89 m/s)2= 19,196,744 Joules (plugging in the current values for the Blue Whale's maximum confirmed mass as m, and its speed in short bursts as v) which falls just short of the 20,920,000 Joules required for a Small Building level Power level. Even at the low end of 75.5 tons for a male pygmy Blue Whale.
, it is easily able to have a KE=(1/2)(75500 kg)((13.89 m/s)^2)=7.283×10^6 J/1.74 kilograms of TNT (9-B+), Wall+ Tier.
And at our lowest end (5.56 m/s cruising speed):
KE=(1/2)(75500 kg)((5.56 m/s^)^2)= 1,166,988.4 J/0.28 kg of tnt (9-B)
A study, which has reduced the Perucetus to a more realistic Wall-Level Power level, has ironically allowed Blue Whales to reach a maximum weight of 250 tons.
And remember, to have Small Building-level Power, a Blue Whale must have a maximum KE of 20,920,000 Joules.
Plugging this into our formula:
20,920,000 Joules=(1/2)m((13.89 m/s)^2)
41,840,000 Joules=m((13.89 m/s)2)
41,840,000 Joules/192.9321 (m/s)^2
216,863.86 kg=m
And assuming Blue Whales are perfect cubes that weigh that much (for simplicity):
199000 kg/27000m^3 = 7.37 kg/m3
And now:
216,863.86 kg/7.37 kg/m3 = 29,425.22 m3, which results in a cube root of approximately 30.87 meters, so all the largest confirmed Blue Whale has to do is to add one more meter to its length to reach Small Building level.
With a 250 ton Blue Whale:
KE=(1/2)(250000 kg)((13.89 m/s)^2)
KE=125000 kg(192.9321 (m^2/s^2))
KE=24 116 512.5 Joules.
Yup! Over 5 kilos of TNT for the KE of the largest Blue Whale specimens possible in short bursts! Blue Whales can possible reach Small Building levels of power now! It's lucky we lived in a time where we have an animal with a Small Building Power Level. This is more KE than a Bison-sized Rathos, which can violently shatter stone walls. It's a good thing these animals are completely docile, or else...
And just to make sure this is Small Building Tier:
(0.005 tons TNT)(4,184,000,000 J/1 ton TNT)=20,920,000 Joules
24,116,512.5 J-20,920,000 J= 3 196 512.5 joules greater than the minimum threshold for Small Building Tier characters.
Referrences
- ↑ https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4304853/
- ↑ https://www.researchgate.net/publication/240590693_Body_weight_of_some_species_of_large_whales
- ↑ https://www.speedofanimals.com/animals/blue_whale
- ↑ https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10909350/
- ↑ https://www.kylesconverter.com/energy,-work,-and-heat/joules-to-tons-of-tnt